The one-dimensional Keller-Segel model with fractional diffusion of cells
نویسندگان
چکیده
We investigate the one-dimensional Keller-Segel model where the diffusion is replaced by a non-local operator, namely the fractional diffusion with exponent 0 < α ≤ 2. We prove some features related to the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial data. More precisely a singularity appears in finite time when α < 1 and the initial configuration of cells is sufficiently concentrated. On the opposite, global existence holds true for α ≤ 1 if the initial density is small enough in the sense of the L norm.
منابع مشابه
The fractional Keller-Segel model
The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing up solutions for large enough initial conditions in dimensions d ≥ 2, but all the solutions are regular in one dimension; a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions...
متن کاملQualitative behavior of a Keller-Segel model with non-diffusive memory
In this paper a one-dimensional Keller-Segel model with a logarithmic chemotactic-sensitivity and a non-diffusing chemical is classified with respect to its long time behavior. The strength of production of the non-diffusive chemical has a strong influence on the qualitative behavior of the system concerning existence of global solutions or Dirac-mass formation. Further, the initial data play a...
متن کاملCross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model
Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional crossdiffusion term in the equation for the chemical signal is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical substance. This allows one to prove, for arbitrarily small cross diffusion, the global existence of ...
متن کاملA chemotaxis model with threshold density and degenerate diffusion
A quasilinear degenerate parabolic system modelling the chemotactic movement of cells is studied. The system under consideration has a similar structure as the classical Keller-Segel model, but with the following features: there is a threshold value which the density of cells cannot exceed and the flux of cells vanishes when the density of cells reaches this threshold value. Existence and uniqu...
متن کاملA (1+2)-Dimensional Simplified Keller-Segel Model: Lie Symmetry and Exact Solutions
This research is a natural continuation of the recent paper “Exact solutions of the simplified Keller–Segel model” (Commun Nonlinear Sci Numer Simulat 2013, 18, 2960–2971). It is shown that a (1+2)-dimensional Keller–Segel type system is invariant with respect infinite-dimensional Lie algebra. All possible maximal algebras of invariance of the Neumann boundary value problems based on the Keller...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009